## The Preparation of Vanadium Tetrachloride from Vanadium Dichloride Oxide and Vanadium Trichloride and the Hydrogen Reduction Process of Vanadium Tetrachloride

Akimasa Yajima, Ryoko Matsuzaki, and Yuzo Saeki\*

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259,

Nagatsuta-cho, Midori-ku, Yokohama 227

(Received February 14, 1980)

The reactions of VCl<sub>2</sub>O and VCl<sub>3</sub> with chlorine, and the reaction of VCl<sub>3</sub>O, formed by the chlorination of VCl<sub>2</sub>O, with chlorine in the presence of carbon were examined. The products formed by the reaction between gaseous VCl<sub>4</sub> and hydrogen at various temperatures, and the behavior of VCl<sub>3</sub> and VCl<sub>2</sub> on heating in a hydrogen stream were examined. The reaction between VCl<sub>2</sub>O and chlorine occurs above ca. 120 °C and proceeds markedly above ca. 170 °C to form VCl<sub>3</sub>O. VCl<sub>4</sub> can be obtained by passing the gaseous VCl<sub>3</sub>O together with chlorine through a carbon bed held at ca. 700 °C. The reaction between VCl<sub>3</sub> and chlorine occurs above ca. 80 °C and proceeds markedly above ca. 170 °C to form VCl<sub>4</sub>. The hydrogen reduction process of VCl<sub>4</sub> in the vapor phase may be represented as follows: The reaction between VCl<sub>4</sub> and hydrogen, 2VCl<sub>4</sub>(g) +H<sub>2</sub>(g) $\rightarrow$ 2VCl<sub>3</sub>(s) +2HCl(g), proceeds above ca. 500 °C to form VCl<sub>3</sub>. Subsequently, the hydrogen reduction of the VCl<sub>3</sub>, 2VCl<sub>3</sub>(s) +YCl<sub>2</sub>(s) +YCl<sub>4</sub>(g), proceed to form VCl<sub>2</sub>. Above ca. 620 °C, the reaction between the VCl<sub>2</sub> and hydrogen, VCl<sub>2</sub>(s) +YCl<sub>2</sub>(g) $\rightarrow$ V(s) +2HCl(g), proceeds to form vanadium.

The vanadium trichloride oxide (VCl<sub>3</sub>O) which is dissolved in the titanium tetrachloride (TiCl<sub>4</sub>) prepared by the chlorination of titanium ores is commercially removed as a non-volatile vanadium-containing precipitate by bubbling hydrogen sulfide through the TiCl<sub>4</sub>. The present authors<sup>1)</sup> have previously reported that the precipitate formed by the reaction between VCl<sub>3</sub>O and hydrogen sulfide is a mixture of vanadium dichloride oxide (VCl<sub>2</sub>O), vanadium trichloride (VCl<sub>3</sub>), and sulfur. The sulfur can be selectively separated by heating the mixture at ca. 250 °C in an argon stream.<sup>2,3)</sup>

From the view point of resources utilization, it is important to obtain fundamental information on the preparation of vanadium tetrachloride (VCl<sub>4</sub>) from the mixture of VCl<sub>2</sub>O and VCl<sub>3</sub> and on the preparation of vanadium by the hydrogen reduction of the VCl<sub>4</sub>.

There has been no report on the reaction between VCl<sub>2</sub>O and chlorine. It has been reported that VCl<sub>3</sub> reacts with chlorine at 600 °C to form VCl<sub>4</sub>.<sup>4</sup>) Regarding the hydrogen reduction of VCl<sub>4</sub> in the vapor phase, Jantsch and Zemek<sup>5</sup>) have reported that vanadium is obtained by the hydrogen reduction of VCl<sub>4</sub> at 680—700 °C. On the other hand, it has been reported that vanadium dichloride (VCl<sub>2</sub>) is obtained by the reaction between VCl<sub>4</sub> and hydrogen above 650 °C,<sup>6</sup>) or at 750—800 °C.<sup>7</sup>)

In this paper, the reactions of VCl<sub>2</sub>O and VCl<sub>3</sub> with chlorine, and the reaction of VCl<sub>3</sub>O, formed by the chlorination of VCl<sub>2</sub>O, with chlorine in the presence of carbon were examined. The hydrogen reduction process of VCl<sub>4</sub> in the vapor phase was also examined.

## **Experimental**

Materials. The VCl<sub>2</sub>O used was prepared from VCl<sub>3</sub>, divanadium trioxide( $V_2O_3$ ), and VCl<sub>3</sub>O,<sup>8)</sup> and confirmed to be VCl<sub>2</sub>O<sup>9)</sup> by X-ray analysis. The chemical analysis gave V, 37.0; Cl, 51.4% (Calcd for VCl<sub>2</sub>O: V, 36.96; Cl, 51.44%). VCl<sub>3</sub> was obtained by the thermal decomposition of VCl<sub>4</sub> at 180 °C in an argon atmosphere,<sup>3)</sup> and confirmed to be VCl<sub>3</sub><sup>10)</sup> by X-ray analysis. The chemical analysis gave V, 32.4; Cl,

67.6% (Calcd for VCl<sub>3</sub>: V, 32.38; Cl, 67.62%). VCl<sub>3</sub>O was prepared by the reaction between  $V_2O_5$ , which had been obtained by the thermal decomposition of guaranteed reagent ammonium metavanadate, and chlorine in the presence of carbon at 300 °C.<sup>11</sup> The chemical annlysis gave V, 29.4; Cl, 61.3% (Calcd for VCl<sub>3</sub>O: V, 29.40; Cl, 61.37%). Carbon was obtained by the thermal decomposition of guaranteed reagent glucose. VCl<sub>4</sub> was prepared by the reaction between vanadium (V, 99.8% up) and chlorine at 500 °C.<sup>3</sup>) The chemical analysis gave V, 26.4; Cl, 73.5% (Calcd for VCl<sub>4</sub>: V, 26.43; Cl, 73.57%). VCl<sub>2</sub> was obtained by the disproportionation of VCl<sub>3</sub> in an argon stream at 650 °C,<sup>3</sup>) and confirmed to be VCl<sub>2</sub><sup>12</sup>) by X-ray analysis. The chemical analysis gave V, 41.8; Cl, 58.1% (Calcd for VCl<sub>2</sub>: V, 41.81; Cl, 58.19%).

Experimental Procedures. The percentages of reacted VCl<sub>2</sub>O or VCl<sub>3</sub> on heating in a chlorine stream at various temperatures for a specified period were examined as follows: The sample (1.0 g) in a quartz boat (60 mm length, 13 mm width, 7 mm depth) was placed in a straight reaction tube (17 mm i. d.) with a condenser. Chlorine was introduced into the reaction tube at a flow-rate of 50 cm³/min. The sample part was then placed in the center of an electric furnace (300 mm in heating length) maintained at a specified temperature. The weight loss of the sample on heating in a chlorine stream for a specified period was measured. The temperature of the sample part was controlled to within  $\pm 2$  °C.

The reaction between VCl<sub>3</sub>O and chlorine in the presence of carbon was examined as follows: Gaseous VCl<sub>3</sub>O was formed by heating VCl<sub>3</sub>O (27 g) at 120 °C and carried by a stream of argon (40 cm³/min) to a carbon bed (30 mm diameter, 150 mm length) held at a specified temperature. Chlorine was simultaneously introduced at a flow-rate of 100 cm³/min through a separate tube into the carbon bed. The mean flow-rate of gaseous VCl<sub>3</sub>O was 10.7 cm³/min. The reaction was allowed to proceed for 1 h.

The products obtained by the hydrogen reduction of VCl<sub>4</sub> in the vapor phase at various temperatures were examined as follows: Gaseous VCl<sub>4</sub> was formed by heating VCl<sub>4</sub> (28 g) at 130 °C and carried by a stream of argon (50 cm³/min) to the reaction zone (28 mm i. d., 250 mm length) held at a specified temperature. Hydrogen was simultaneously introduced at a flow-rate of 150 cm³/min through a separate tube into the reaction zone. The mean flow-rate of gaseous VCl<sub>4</sub> was 7.4

cm<sup>3</sup>/min. A quartz or high purity alumina tube was inserted inside the reaction tube. The reaction was allowed to proceed for 2 h.

Throughout this work, the chlorides and chloride oxides of vanadium were handled in an argon atmosphere or *in vacuo* to prevent any contamination from moisture in the air.

Thermogravimetry (TG). The sensitivity of the quartz helix used for TG was approximately 67 mm/g. The sample (0.15 g) was heated at a rate of 2.5 °C/min and the flow-rate of chlorine or hydrogen was maintained at 50 cm<sup>3</sup>/min.

Analytical. X-Ray analysis of the solid sample was performed using Ni filtered Cu radiation. The sample chamber of the diffractometer was maintained under dry nitrogen atmosphere to prevent the contamination of the sample from moisture in the air during the irradiation.

The vanadium content in the sample was determined by chelatometric titration;<sup>13)</sup> the chlorine content was gravimetrically determined as AgCl, after dissolving the sample in dilute nitric acid.

## Results and Discussion

Preparation of Vanadium Tetrachloride from Vanadium Reaction Dichloride Oxide and Vanadium Trichloride. between VCl<sub>2</sub>O and Chlorine: On heating VCl<sub>2</sub>O in an argon stream, the VCl<sub>2</sub>O disproportionates above ca. 295 °C according to the reaction, 2VCl<sub>2</sub>O(s)→  $VClO(s) + VCl_3O(g)$ , as previously reported by the present authors.2) The TG curve of VCl<sub>2</sub>O in a chlorine stream showed that VCl<sub>2</sub>O began to react with chlorine before disproportionating and that the weight loss reached 100%. The percentages of reacted VCl<sub>2</sub>O on heating VCl<sub>2</sub>O in a chlorine stream at various temperatures for 0.25-3 h were examined. At 110 °C, no reaction product was observed. The results obtained at various temperatures above 120 °C are shown in Fig. 1.

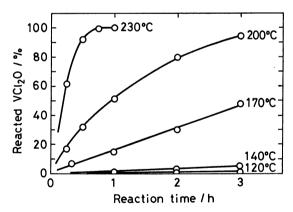



Fig. 1. Effect of temperature on the reaction between VCl<sub>2</sub>O and chlorine.

The chemical analysis of the reaction product obtained by heating VCl<sub>2</sub>O at 200 °C in a chlorine stream gave V, 29.4; Cl, 61.3%. From this result, the reaction product between VCl<sub>2</sub>O and chlorine was found to be VCl<sub>3</sub>O (Calcd: V, 29.40; Cl, 61.37%).

The above-mentioned results reveal that VCl<sub>2</sub>O reacts with chlorine above ca. 120 °C according to the reaction,

$$2VCl_2O(s) + Cl_2(g) \longrightarrow 2VCl_3O(g),$$
 (1)

and the reaction proceeds markedly above ca. 170 °C. Since the vapor pressure of VCl<sub>3</sub>O is 12.3 mmHg<sup>8)</sup> even at room temperature (20 °C), the VCl<sub>3</sub>O formed by heating VCl<sub>2</sub>O (5.0 g) in a chlorine stream (100 cm³/min) at 200 °C for 2.h was condensed in a trap held at 20 °C, 0 °C ( $P_{\text{vcl,o}}$ =4.0 mmHg),8) or -18 °C ( $P_{\text{vcl,o}}$ =1.2 mmHg).8) The percentage of the amount of VCl<sub>3</sub>O condensed in the trap held at 20 or 0 °C to the calculated value based on the amount of reacted VCl<sub>2</sub>O was 82 or 94%, respectively. When the temperature of the cooling trap was -18 °C, it was observed that a small amount of chlorine was dissolved in the condensed VCl<sub>3</sub>O.<sup>14)</sup> The amount of chlorine dissolved in the VCl<sub>3</sub>O was determined as follows: after the chlorination was over, the VCl<sub>3</sub>O was allowed to warm up to 0 °C in an argon atmosphere in order to liberate the chlorine from the VCl<sub>3</sub>O. The liberated chlorine was absorbed in sodium hydroxide (NaOH) solution. A small amount of VCl<sub>3</sub>O which vaporized during the above procedure was also absorbed in the NaOH solution. The total amount of chlorine in the NaOH solution was gravimetrically determined as AgCl, while the vanadium content in the NaOH solution was also determined by chelatometric titration. From the vanadium content, the amount of the VCl<sub>3</sub>O absorbed in the NaOH solution was calculated. The amount of chlorine dissolved in the VCl<sub>2</sub>O was calculated by subtracting the amount of chlorine corresponding to the VCl<sub>3</sub>O absorbed in the NaOH solution from the total amount of chlorine in the NaOH solution. The result showed that the VCl<sub>3</sub>O condensed in the trap held at -18 °C contained 2.0% of chlorine. percentage of the amount of VCl<sub>3</sub>O obtained after liberating the chlorine to the calculated value based on the amount of reacted VCl<sub>2</sub>O was 97%.

Reaction between  $VCl_3$  and Chlorine: On heating  $VCl_3$  in an argon stream, the  $VCl_3$  disproportionates above ca. 350 °C according to the reaction,  $2VCl_3(s) \rightarrow VCl_2(s) + VCl_4(g)$ , as previously reported by the present authors.<sup>3)</sup> The TG curve of  $VCl_3$  in a chlorine stream showed that  $VCl_3$  began to react with chlorine before disproportionating and that the weight loss reached 100%. The percentages of reacted  $VCl_3$  on heating  $VCl_3$  in a chlorine stream at various temperatures for

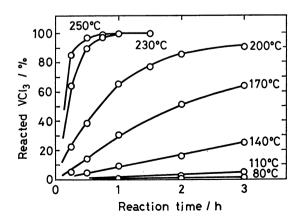



Fig. 2. Effect of temperature on the reaction between VCl<sub>3</sub> and chlorine.

0.25-3 h were examined. At 70 °C, no reaction product was observed. The results obtained at various temperatures above 80 °C are shown in Fig. 2.

The chemical analysis of the reaction product obtained by heating VCl<sub>3</sub> in a chlorine stream at 200 °C gave V, 26.4; Cl, 73.5%. From the result, the reaction product between VCl<sub>3</sub> and chlorine was found to be VCl<sub>4</sub> (Calcd: V, 26.43; Cl, 73.57%).

The above-mentioned results reveal that  $VCl_3$  reacts with chlorine above ca. 80 °C according to the reaction,

$$2VCl_3(s) + Cl_2(g) \longrightarrow 2VCl_4(g),$$
 (2)

and that the reaction proceeds markedly above ca. 170 °C.

Since the vapor pressure of VCl<sub>4</sub> is 5.4 mmHg<sup>15)</sup> even at room temperature (20 °C), the VCl4 formed by heating VCl<sub>3</sub> (5.0 g) in a chlorine stream (100 cm<sup>3</sup>/min) at 200 °C for 2 h was condensed in a trap held at 20 °C, 0 °C  $(P_{vcl} = 1.7 \text{ mmHg})$ , 15) or -18 °C  $(P_{vcl} = 0.5)$ mmHg).15) The percentage of the amount of VCl<sub>4</sub> condensed in the trap held at 20 °C to the calculated value based on the amount of reacted VCl<sub>3</sub> was 92%. When the temperature of the cooling trap was 0 or -18 °C, it was observed that a small amount of chlorine was dissolved in the condensed VCl<sub>4</sub>.<sup>16)</sup> formed is allowed to warm up to 20 °C in an argon atmosphere in order to liberate the chlorine. amount of chlorine dissolved in the VCl<sub>4</sub> was determined in the same manner as described in the experiment on From the results, the amounts of chlorine dissolved in the VCl<sub>4</sub> condensed at -18 and 0 °C were 0.7 and 4.0%, respectively. The percentage of the amount of VCl<sub>4</sub> obtained after liberating the chlorine to the calculated value based on the amount of reacted  $VCl_3$  was 96% at 0 °C and 97% at -18 °C.

Reaction between VCl<sub>3</sub>O and Chlorine in the Presence of Carbon: As mentioned above, VCl<sub>3</sub>O is formed by the reaction between VCl<sub>2</sub>O and chlorine. To obtain knowledge of formation of VCl<sub>4</sub> from the VCl<sub>3</sub>O, the products obtained by passing gaseous VCl<sub>3</sub>O together with chlorine through a carbon bed held at various temperatures were examined. The results are shown in Table 1.

Table 1. Reaction product between gaseous  ${
m VCl_3O}$  and chlorine in the presence of Carbon

| Temp | Chemical                 | analysis/% | Product/%                    |                    |
|------|--------------------------|------------|------------------------------|--------------------|
|      | $\widetilde{\mathrm{v}}$ | Cl         | $\widetilde{\mathrm{VCl_4}}$ | VCl <sub>3</sub> O |
| 400  | 29.4                     | 61.3       | P. C. C.                     | 100                |
| 5.00 | 28.7                     | 64.3       | 24                           | 76                 |
| 600  | 27.3                     | 70.0       | 71                           | 29                 |
| 650  | 26.7                     | 72.5       | 91                           | 9                  |
| 700  | 26.4                     | 73.5       | 100                          |                    |

The chloride and chloride oxide of vanadium in the liquid state at room temperature are VCl<sub>4</sub> (Calcd: V, 26.43; Cl, 73.57%) and VCl<sub>3</sub>O (Calcd: V, 29.40; Cl, 61.37%). This fact and the chemical analysis shown in Table 1 showed that VCl<sub>4</sub> was formed above 500 °C, and that the weight percentage of VCl<sub>4</sub> increased with

increasing temperature. At 700 °C,  $VCl_4$  alone was obtained. When  $VCl_4$  formed by the chlorination of  $VCl_3O$  at 700 °C in the above manner was condensed in a trap cooled at -18 °C,  $VCl_4$  was obtained in a 97% yield.

The above-mentioned results suggest that the following method is preferable for preparing VCl<sub>4</sub> from a mixture of VCl<sub>2</sub>O and VCl<sub>3</sub>: By heating a mixture of VCl<sub>2</sub>O and VCl<sub>3</sub> at ca. 200 °C in a chlorine stream, VCl<sub>4</sub> and VCl<sub>3</sub>O are formed. Subsequently, VCl<sub>4</sub> is prepared by passing the gaseous mixture of VCl<sub>4</sub> and VCl<sub>3</sub>O together with chlorine through a carbon bed held at ca. 700 °C. The resulting VCl<sub>4</sub> is condensed in a trap cooled at -18 °C.

Hydrogen Reduction Process of Vanadium Tetrachloride. Reduction Products of Gaseous VCl<sub>4</sub> with Hydrogen: Prior to the examination of the hydrogen reduction of VCl<sub>4</sub> in the vapor phase, the thermal decomposition of gaseous VCl<sub>4</sub> was examined to know whether the thermal decomposition of gaseous VCl<sub>4</sub> occurs under the experimental conditions of this work. The experimental procedure was the same as that for the hydrogen reduction described in the previous paragraph, except that argon was introduced into the reaction zone instead of hydrogen at the same flow-rate as that of hydrogen.

The experimental results showed that 0.009 g of VCl<sub>3</sub> and 0.002 g of chlorine were formed by the thermal decomposition of gaseous VCl<sub>4</sub> at 200, 600, and 1000 °C, regardless of the heating temperature. The result indicated that ca. 0.1% of gaseous VCl<sub>4</sub> introduced into the reaction zone thermally decomposed. From the result, it was considered that the decomposition of gaseous VCl<sub>4</sub> could be neglected in the discussion about the experimental results for the hydrogen reduction of gaseous VCl<sub>4</sub>, to be described later.

The products formed by heating gaseous VCl<sub>4</sub> in a hydrogen stream at various temperatures were examined by X-ray analysis and chemical analysis. At 400 °C, it was observed that the reaction between gaseous VCl<sub>4</sub> and hydrogen did not proceed. The results obtained above 500 °C are shown in Table 2.

Table 2. Reduction products of Gaseous  $\mathrm{VCl}_4$  with hydrogen at various temperatures

|                           | Un-                     |         |                             |                  |         |                                        |          |
|---------------------------|-------------------------|---------|-----------------------------|------------------|---------|----------------------------------------|----------|
| Temp In the reaction zone |                         | ction   | Outside the reaction zone   |                  |         | reacted<br>\VCl <sub>4</sub> /<br>mol% |          |
|                           | $\overline{\mathbf{v}}$ | $VCl_2$ | $\overline{\mathrm{VCl}_3}$ | $\mathbf{v}^{-}$ | $VCl_2$ | $\stackrel{\circ}{ m VCl_3}$           | 11101 /0 |
| 500                       |                         | <1      | 2                           |                  |         | 1                                      | 96       |
| 600                       |                         | 23      |                             | _                | 19      | <1                                     | 56       |
| 700                       | 2                       | 63      |                             |                  | 34      |                                        |          |
| 800                       | 4                       | 64      |                             | <1               | 31      |                                        |          |
| 900                       | 34                      | 29      |                             | 6                | 30      |                                        | -        |
| 1000                      | 76                      |         |                             | 23               |         |                                        |          |

The results indicate that the reaction between gaseous VCl<sub>4</sub> and hydrogen proceeds above ca. 500 °C, giving VCl<sub>3</sub> and VCl<sub>2</sub> at 500—600 °C, VCl<sub>2</sub> and vanadium at 700—900 °C, and vanadium alone at 1000 °C.

Behavior of VCl<sub>3</sub> and VCl<sub>2</sub> on Heating in a Hydrogen Stream: In order to reveal the hydrogen reduction process of gaseous VCl<sub>4</sub>, the behavior of VCl<sub>3</sub> and VCl<sub>2</sub>, formed during the reduction process, on heating in a hydrogen stream was examined.

The TG curve of VCl<sub>3</sub> in a hydrogen stream is shown in Fig. 3(a). The result showed that VCl<sub>3</sub> began to react with hydrogen at ca. 270 °C before the disproportionation described in the previous paragraph occurred. The sample heated up to 600 °C was found to be VCl<sub>2</sub> by X-ray analysis. The formations of hydrogen chloride and VCl<sub>4</sub> were observed during the weight loss. The final weight loss was 47.7%. This value was larger than the calculated value, 22.54%, based on the hydrogen reduction of VCl<sub>3</sub> to form VCl<sub>2</sub>,

 $2VCl_3(s) + H_2(g) \longrightarrow 2VCl_2(s) + 2HCl(g),$  (3) and was smaller than the calculated value, 61.27%, based on the disproportionation of  $VCl_3$  to form  $VCl_2$ ,  $2VCl_3(s) \longrightarrow VCl_2(s) + VCl_4(g).$  (4)

These facts were considered to indicate that, on heating VCl<sub>3</sub> in a hydrogen stream, both the hydrogen reduction and the disproportionation of VCl<sub>3</sub> occurred. The experimental value of the weight loss showed that 35% of VCl<sub>3</sub> was reduced with hydrogen and 65% of VCl<sub>3</sub> disproportionated.

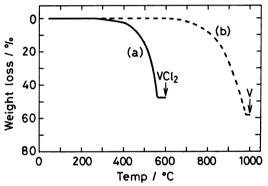



Fig. 3. TG curves of VCl<sub>3</sub> and VCl<sub>2</sub> in a hydrogen stream.

(a):  $VCl_3$ , (b):  $VCl_2$ .

From the results, on heating VCl<sub>3</sub> in a hydrogen stream, the hydrogen reduction of VCl<sub>3</sub> (Reaction 3) occurs above ca. 270 °C, and the disproportionation of VCl<sub>3</sub> (Reaction 4) occurs above ca. 350 °C in addition to Reaction 3. This result is contrary to the result by Pechkovskii and Vorob'ev,<sup>17)</sup> who reported that on heating VCl<sub>3</sub> in a hydrogen stream above ca. 480 °C, VCl<sub>2</sub> was formed by the hydrogen reduction of VCl<sub>3</sub>.

The TG curve of VCl<sub>2</sub> in a hydrogen stream is shown in Fig. 3(b). In this case, a platinum basket was used for TG, because it had been reported that vanadium reacted with quartz above ca. 1000 °C. <sup>18</sup>) The sample heated up to 1000 °C was found to be vanadium <sup>19</sup>) by X-ray analysis.

These results reveal that on heating VCl<sub>2</sub> in a hydrogen stream, VCl<sub>2</sub> reacts with hydrogen to form vanadium above ca. 620 °C according to the reaction,

$$VCl_2(s) + H_2(g) \longrightarrow V(s) + 2HCl(g).$$
 (5)

Consideration on Hydrogen Reduction Process of VCl4:

From the above-mentioned results, the hydrogen reduction process of VCl<sub>4</sub> in the vapor phase was discussed.

As shown in Table 2, on heating VCl<sub>4</sub> in a hydrogen stream, VCl<sub>3</sub> and VCl<sub>2</sub> were formed at 500—600 °C. The only reaction which gave VCl<sub>3</sub> was thought to be

$$2VCl_4(g) + H_2(g) \longrightarrow 2VCl_3(s) + 2HCl(g),$$
 (6)

since the thermal decomposition of gaseous VCl<sub>4</sub> scarcely proceeded as described before. The reactions which gave VCl<sub>2</sub> were considered to be the hydrogen reduction and the disproportionation of the VCl<sub>3</sub>, since the hydrogen reduction of VCl<sub>3</sub> (Reaction 3) occurs above ca. 270 °C and the reduction is accompanied by the disproportionation (Reaction 4) above ca. 350 °C, as described before. As shown in Table 2, above 700 °C, vanadium was formed in addition to VCl<sub>2</sub>, and vanadium alone was obtained at 1000 °C. Since VCl<sub>2</sub> is reduced with hydrogen to vanadium (Reaction 5) above ca. 620 °C, it was considered that the vanadium obtained was formed by the hydrogen reduction of the VCl<sub>2</sub> formed by Reactions 3 and 4.

These results allow us to represent the hydrogen reduction process of VCl<sub>4</sub> in the vapor phase as follows: the reaction between gaseous VCl<sub>4</sub> and hydrogen proceeds above ca. 500 °C to form VCl<sub>3</sub> (Reaction 6). Subsequently, the hydrogen reduction of the VCl<sub>3</sub> (Reaction 3) and the disproportionation of the VCl<sub>3</sub> (Reaction 4) proceed to form VCl<sub>2</sub>. Above ca. 620 °C, the reaction between the VCl<sub>2</sub> and hydrogen proceeds to form vanadium (Reaction 5).

The present work was partially supported by the Asahi Glass Foundation for Industrial Technology.

## References

- 1) A. Yajima, R. Matsuzaki, and Y. Saeki, Bull. Chem. Soc. Jpn., 51, 1098 (1978).
- 2) A. Yajima, R. Matsuzaki, and Y. Saeki, Bull. Chem. Soc. Jpn., 52, 3549 (1979).
- 3) A. Yajima, R. Matsuzaki, and Y. Saeki, Bull. Chem. Soc. Jpn., 52, 3292 (1979).
  - 4) O. Ruff and H. Lickfett, Ber., 44, 506 (1911).
- 5) G. Jantsch and F. Zemek, Monatsch. Chem., 84, 1119 (1953).
- 6) R. E. McCarley and J. W. Roddy, J. Inorg. Nucl. Chem., 15, 293 (1960).
  - 7) A. Morette, C. R. Acad. Sci., 200, 1110 (1935).
  - 8) H. Oppermann, Z. Anorg. Allg. Chem., 351, 113 (1967).
  - 9) R. J. Sime, Z. Kristallogr., 124, 238 (1967).
- 10) JCPDS, Powder Diffraction File, 15-382.
- 11) Y. Saeki, T. Ono, and R. Matsuzaki, Kogyo Kagaku Zasshi, 74, 828 (1971).
- 12) JCPDS, Powder Diffraction File, 15-215.
- 13) J. Krtil, Z. Anal. Chem., 219, 412 (1965).
- 14) F. E. Brown and J. E. Snyder, J. Am. Chem. Soc., 47, 2671 (1925).
- 15) A. A. Sytnik, A. A. Furman, and A. S. Kulyasova, Russ. J. Inorg. Chem., 11, 543 (1966).
- 16) A. Morette, C. R. Acad. Sci., 202, 1846 (1936).
- 17) V. V. Pechkovskii and N. I. Vorob'ev, Russ. J. Inorg. Chem., 10, 779 (1965).
- 18) W. Biltz and A. Köcher, Z. Anorg. Allg. Chem., 241, 324 (1939).
- 19) JCPDS, Powder Diffraction File, 22-1058.